
International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 48
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Novel Technique to Handle Small Files with Big Data Technology
Bharti Gupta

M.Tech Scholar, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra,
Haryana, India

Email: gupta.bharti2503@gmail.com
Rajender Nath

Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, Haryana,
India

Email: rnath2k3@gmail.com
Girdhar Gopal

Assistant Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra,
Haryana, India

Email: girdhar.gopal@kuk.ac.in
Abstract
Hadoop is an open source Apache project and a software framework for distributed processing of
large datasets across large clusters of computers with commodity hardware. Large datasets include
terabytes or petabytes of data where as large clusters means hundreds or thousands of nodes. It
supports master slave architecture, which involves one master node and thousands of slave nodes.
NameNode acts as the master node which stores all the metadata of files and various data nodes are
slave nodes which stores all the application data. It becomes a bottleneck, when there is a need to
process numerous number of small files because the NameNode utilizes the more memory to store the
metadata of files and data nodes consume more CPU time to process numerous number of small files.
This paper proposes a novel technique to handle small file problems with Hadoop technology based on
file merging, caching and correlation strategies. The proposed technique has reduced the amount of
data storage at NameNode as has been proved by theoretical validation.

Keywords - Hadoop, HDFS, Map Reduce, small file storage, small files in Hadoop.

1. Introduction

In today's world, it is increasingly inseparable from

the network, people visit hundred of pages, upload

photos or videos on the daily basis, by which data

content on the network is growing at exponential

rate. Traditional architectures has become unable to

process these vast amount of data. Therefore, for

processing and storage of vast amount of data many

new technologies like Hadoop has been reported in

the literature [12]. Hadoop is an open source

software framework for distributed processing of

large datasets across large clusters of computers.

Hadoop architecture consists of two main layers that

are Hadoop Distributed File System (HDFS) and

MapReduce programming model. HDFS is a

distributed file system designed to run on

commodity hardware and store extremely large files

suitable for streaming data access patterns. HDFS is

highly fault tolerant and is able to scale up from a

single server to thousands of machines, each

offering the same functionality that is local

computation and storage. HDFS protects the data by

replicating data blocks into multiple nodes, with a

default replication factor of 3. HDFS has a

master/slave architecture which consists of two

types of nodes, namely, a NameNode called

“master” and several DataNodes called “slaves” [8].

MapReduce is a programming model to process

large datasets and make use of computing resources

of each server's CPU. It comprises of two phases:

Map phase and Reduce phase. In Map phase,

mapper must be able to ingest the input and process

IJSER

http://www.ijser.org/
mailto:gupta.bharti2503@gmail.com
mailto:rnath2k3@gmail.com
mailto:girdhar.gopal@kuk.ac.in

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 49
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

that input record and then that processed record is

forwarded to Reduce phase, where tasks are

reduced. The mapper takes in a key/value pair and

generates intermediate key/value pairs. The reducer

merges all the pairs associated with the same

intermediate key and produce the final output that is

list of key/values. Every job must contain one map

function followed by optional reduce function, these

steps need to follow this certain order. MapReduce

incorporates JobTracker and TaskTrackers [12]. The

storage system of Hadoop is not physically separated

from the processing system [10]. Hadoop is

excellent when it comes to handle large files of data.

HDFS divides the input data into data blocks of

minimum 64 MB in size. NameNode stores the

metadata of these data blocks and DataNodes store

the actual data blocks. These data blocks are

processed by MapReduce. But with the increasing

scale of small files, Hadoop gradually becomes

powerless. It is inefficient in handling numerous

number of small files whose size ranges from 10 KB

to 5 MB [2].

These numerous small files can bring serious

performance issues with Hadoop. Because, storing

these many small files into Hadoop becomes an

overhead in memory usage of metadata stored in

NameNode, so it impacts on the size of memory in

the NameNode. Thus, a large number of small files

will take significant amount of NameNode's main

memory [11]. To process these many small files

more number of MapReduce tasks are created, it

creates an overhead between MapReduce tasks and

CPU time [4].

The rest of the paper is organized as follows. Section

2 discusses the related work. Section 3 presents the

problem formulation. Section 4 proposes a novel

technique to handle small files problem. Section 5

presents theoretical validation of the proposed

technique. Section 6 concludes the paper.

2. Related Work

Researcher [8] described the detailed design and

implementation of HDFS. They realized their

assumption that applications would generally create

large files was flawed and new applications for

HDFS would need to store a large number of small

files. They [6] [7] described as there is only one

NameNode in Hadoop which keeps all the metadata

in main memory, a large number of small files

produce significant impact on metadata performance

of HDFS.

They [5] discussed that HDFS is designed to

read/write large files and there is no optimization

mechanism for small files. There would be a

mismatch in accessing patterns if HDFS is used to

read/write a large number of small files. Research on

small file problem of HDFS has put up three issues

that need to be solved in a more appropriate manner.

The first issue is the identification of 'how small is

small'. They treated the files smaller than 16 MB are

small files, no proof or justification was provided for

the same. The second issue is the classification of

small files. He [10] discussed the small files into two

types: (i) files that are pieces of a large logical file

(ii) files that are inherently small. The third issue is

the solutions to the small file problem. Solutions are

classified into two categories: general solutions and

special solutions. HAR [6] , SequenceFile [10] and

MapFile [8] are typical general solutions to small

files optimization for Hadoop used by various

researchers.

HAdoop Archive (HAR) packs a number of small

files into large HDFS blocks so that the original files

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 50
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

can be accessed in parallel transparently and

efficiently. It contains the metadata files and data

files. The file data is stored in multiple part files,

these part files are indexed for keeping the original

separation of data intact. The metadata files can

record the original directory information and the file

states. HAR can reduce the memory consumption of

NameNode to a great extent [6].

A SequenceFile is a flat file which consists of binary

key-value pairs. It uses the file name as the key and

contents of file as value. Small files can be put into a

single sequence file that is processed using

MapReduce operating on sequence file [10].

A MapFile is sorted SequenceFile with an index to

lookup operation by key. It consists of two files, a

data file and a smaller index file. All of the sorted

key-value pairs are stored in the data file and the key

location information is stored in index file. MapFile

does not search for entire file when looking for a

specific key [8].

They [5] discussed a special solution which

combined the small files into a large one and built a

hash index for each small file which stores the small

data of Geographic Information System on HDFS.

They [13] discussed that HDFS had inefficient issue

with small files and traditional methods had low

efficiency performance and high consumption of

resources. They discussed a proposed approach to

efficiently store and process large number of small

files by the procedure of file merger. It consisted of

two modules. First, small files written and merger

and the other one was small file read and separation.

In the file processing strategy before the merging of

small files index of 16 bytes in file head got added.

The size of the merged new file could not be more

than HDFS minimum file chunk that is 64 MB.

3. Problem Formulation

As it is evident from the related work discussed in

the section 2, when small files are stored on HDFS,

disk utilization is not a bottleneck. In general, small

file problem occurs when memory of NameNode is

highly consumed by the metadata and BlockMap of

huge numbers of files. NameNode stores file system

metadata in main memory and the metadata of one

file takes about 250 bytes of memory. For each

block by default three replicas are created and its

metadata takes about 368 bytes [9]. Let the number

of memory bytes that NameNode consumed by itself

be denoted as α. Let the number of memory bytes

that are consumed by the BlockMap be denoted as β.

The size of an HDFS block is denoted as S. Further

assume that there are N files, whose lengths are

denoted as L1, L2, …., LN, then the memory

consumed by the NameNode is given by

𝑀𝑀𝑁𝑁𝑁𝑁 = 250 ∗ 𝑁𝑁 + (368 + 𝛽𝛽) ∗ ∑ ⌈𝐿𝐿𝑖𝑖
𝑆𝑆
⌉ + 𝛼𝛼𝑁𝑁

𝑖𝑖=1 (1)

In order to relieve the memory consumption of

NameNode, the number of small files that

NameNode manages and number of blocks need to

be reduced [3]. The various techniques [6], [5], [8],

[10] to handle the small files problem have been

proposed in the literature but they still suffer from

many limitations such as (i) In HAR, creating an

archive generates a copy of original files, which puts

extra pressure on disk space and no mechanism is

provided to improve access efficiency. (ii)

SequenceFile does not support update/delete method

for a specified key; it only supports append method

whereas MapFile only supports append method for a

specified key. (iii) The existing techniques such as

HAR, SequenceFile, and MapFile do not consider

file correlations while storing files. (iv) The special

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 51
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

solution provided by the Liu et al. uses the index

technique only, which further needs improvement.

4. Proposed Technique to Handle Small Files
Problem

To address the problems mentioned in the last

section a novel technique to handle the small files

has been proposed based on file merging and

caching techniques. The proposed technique is

composed of five phases: (i) File merging strategy

(ii) Local index file strategy (iii) Fragmentation of

files (iv) Uploading of files to HDFS (v) File

caching. These phases are discussed in detail below.

Phase 1: File merging strategy: In this phase,

merging operation is carried out at client side. The

merging strategy merges all the small files into a

single big file and does not perceive the existence of

original small files, thus to reduce the consumption

of NameNode memory.

Phase 2: Local index file strategy: A local index file

is created for each original file to indicate its offset

and length in the merged file. It consists of four

parameters “Location of small file”, “Starting Page

No.”, “End Page No.”, “Merged File Name”. These

two phases are carried out with the following

algorithm.

Algorithm : File Merging and local index file

creation

Begin

Input:

 Fsmall: Set of small files to be merged.

 Fmerged: Name of merged file.

count = Number of files uploaded to HDFS for

merging.

constantCount = count;

offset=0;

While(count>0)

 For each Fsmall Do Begin

 name=Fsmall.name;

 Pstart=offset;

 PEnd= Fsmall.length;

 merged_name=Fmerged.name;

 If((Fmerged.size() + Fsmall.length) >

HDFSBlockSize)

 count=constantCount- count;

 BoundryFilling(count);

 Else read(Fsmall)

 write(Fmerged);

 insert(name, PStart, PEnd, merged_name)

 offset = PEnd;

 count--;

 End For

End While

Output:

 Fmerged: Final merged file.

 FIndex: Local index file for set of merged small

files.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 52
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Phase 3: Fragmentation of files: Files will be

fragmented when merged, so that no internal

fragmentation of files occur in HDFS blocks as

shown in figure 1.

Fig. 1 (a): Merged File before applying the

Boundary Filling

Fig. 1 (b): Merged File after applying the

Boundary Filling

Following algorithm is used to avoid the internal

fragmentation.

Algorithm: Boundary Filling

Begin

Input:

 Fsmall: Set of small files to be merged.

 newFmerged: New name of merged file.

count =Number of small files remained to be

uploaded to HDFS.

constantCount= count;

offset=0;

While(count>0)

 For each Fsmall Do Begin

 name=Fsmall.name;

 PStart = offset;

 PEnd= Fsmall.length;

 merged_name= newFmerged.name;

If((newFmerged.size()+Fsmall.length)>HDFSBlockSize)

 count=constantCount- count;

 boundryFillingAlgo(count); //RECURSION

 Else

 readFully(Fsmall)

 writefully(newFmerged);

 insert (name, PStart, PEnd, merged_name);

 offset = end;

 count--;

 End For

End While

Output:

 Fmerged: Set of small merged file.

 FIndex: Local index file for set of merged small

files.

Phase 4: Uploading of files to HDFS: Both of the

files, local index file and merged file are written to

HDFS which avoid overhead involved in keeping

the information at NameNode. NameNode keeps the

information of merged file and index file only. File

correlations are considered when storing the files to

improve the access efficiency.

Phase 5: File caching strategy: The caching strategy

is used to cache local index file and correlated files.

Based on the strategy, communications with HDFS

are drastically reduced thus to improve the access

efficiency, when downloading files. When a

requested file misses in cache, the client queries the

NameNode for file metadata. According to the

metadata, the client connects with appropriate

DataNodes where blocks locate. When the local

index file is read, based on the offset and length, the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 53
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

requested file is split from the block, and is returned

to the client.

5. Theoretical Validation Of The Proposed
Technique

Suppose there are N small files, which are merged

into K merged files whose lengths are denoted as

LM1, LM2, …, and LMK. The computational formula

of the consumed memory of NameNode in file

merging and caching technique is given as

𝑀𝑀𝑁𝑁𝑁𝑁 = 250 ∗ 𝑁𝑁 + (368 + 𝛽𝛽) ∗ ∑ ⌈𝐿𝐿𝑀𝑀𝑖𝑖
𝑆𝑆
⌉ + 𝛼𝛼𝐾𝐾

𝑖𝑖=1 (2)

The number of blocks required to store the files in

HDFS is calculated as

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ ⌈𝐿𝐿𝑀𝑀𝑖𝑖
𝑆𝑆
⌉𝐾𝐾

𝑖𝑖=1 (3) Memory

consumption of NameNode does not have relations

with the number of original files N, but is relevant

with the number of merged files K, which is much

smaller than N. Thus, number of blocks in (3) are

much smaller than the number of blocks produced

with equation (1) with small files. So It concludes

that the file merging and caching strategy has

effectively reduce the memory consumption of

NameNode, and improve storage efficiency.

As the NameNode only maintains the metadata of

merged files and does not perceive the existence of

original small files, thus it does not put any extra

pressure on disk space, thus improves access

efficiency.

The proposed solution not only uses the index

technique but it also uses the file caching and file

correlation techniques, thus improves access

efficiency.

6. Conclusion

This paper has proposed a novel technique to handle

small files by using Hadoop – a big data technology.

Hadoop is inefficient in handling small files because

storing these small files into HDFS becomes an

overhead in memory usage of metadata stored in

NameNode as more number of Mappers and

Reducers are required to process these files. The

proposed technique is based on file merging and

caching strategies. Theoretical validation of the

proposed technique has shown that it has reduced

the NameNode memory consumption and has

improved the efficiency of storing and accessing

small files in HDFS.

REFERENCES

[1] J. Dean, S. Ghemawat, “MapReduce: simplified

data processing on large clusters”, Commun. ACM

51, pp. 107-113, 2008.

[2] Bo Dong, Jie Qiu and Qinghua Zheng, “A Novel

Approach to Improving the Efficiency of Storing

and Accessing Small Files on Hadoop: a Case Study

by PowerPoint Files”, IEEE Internatioal Conference

on Services Computing, 978-0-7695-4126-6/10, pp.

65-72, 2010.

[3] Bo Dong, Qinghua Zheng, Feng Tian,Kuo-Ming

Chao, Rui Ma, Rachid Anane, “An optimized

approach for storing and accessing small files on

cloud storage”, In Proceedings of Journal of

Network and Computer Applications 35, pp. 1847-

1862, July 2012.

[4] Hadoop, The Hadoop Architecture and Design,

June 2014, Available:

http://hadoop.apache.org/docs/r0.23.11/hadoop-

project-dist/hadoop-hdfs/HdfsDesign.html, Last

Accessed On April 5, 2016.

[5] X Liu, J Han, Y Zhong, C Han, X He,

“Implementing webgis on hadoop: a case study of

improving small file i/o performance on HDFS”, In

IJSER

http://www.ijser.org/
http://hadoop.apache.org/docs/r0.23.11/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/r0.23.11/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 54
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

IEEE international conference on cluster computing

and workshops, CLUSTER’09, pp. 1-8, 2009.

[6] G. Mackey, S. Sehrish and J. Wang, “Improving

metadata management for small files in HDFS”, In

Proceedings of IEEE International Conference on

Cluster computing and workshops,New Orleans,

USA, pp. 1-4, August 31- September 4, 2009.

[7] L. Min, H. Yokota, “Comparing hadoop and fat-

btree based access method for small file i/o

applications”, Web-age information management,

Lecture notes in computer science, vol. 6184,

Springer, pp. 182–193, 2010.

[8] K. Shvachko, K. Hairong, S. Radia, R. Chansler,

“The Hadoop Distributed File System”, In

Proceedings of IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), pp. 1–

10, 2010.

[9] K. Shvachko, “Name-node memory size

estimates and optimization proposal”, 2007,

Available:

https://issues.apache.org/jira/browse/HADOOP-17S.

[10] Tom White, “The Small Files Problem”, 2009,

Available:

http://www.cloudera.com/blog/2009/02/the small

files problem.

[11] T. White, “Hadoop: The Definitive Guide: The

Definitive Guide”, O’Reilly Media, Sebastapol, CA,

2010.

[12] Yu Yuan, Chaoyuan Cui, Yun Wu, Zhuhong

Chen, “Performance analysis of Hadoop for

handling small files in single node”, Computer

Engineering and Application, vol. 49, no. 3, pp. 57 -

60, 2013.

[13] Yang Zhang, Dan Liu, “Improving the

Efficiency of Storing for Small Files in HDFS”, In

Proceedings of IEEE International Conference on

Computer Science and Service System CSSS , 978-

0-7695-4719-0/12 , pp. 2239-2242, 2012.

IJSER

http://www.ijser.org/

	References

